UNIVERSITY CEU SAN PABLO SCHOOL OF PHARMACY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

PROBLEMS OF PHYSICAL CHEMISTRY

2018-2019

LESSON 1

1.- One mole of a monatomic ideal gas at normal temperature and pressure, undergoes a process in which the volume is doubled. The nature of the process is not specified but ΔH is 500 cal and Q is 400 cal. Calculate the final temperature and pressure, ΔU and W for this process. Assume that the gas reaches the same final conditions by a process which involves two steps, the first, isothermal and the second, isochoric, both reversible. Calculate Q, W, ΔU and ΔH .

Data: $R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

2.- Calculate the system, surroundings and universe variation for the isobaric transformation of one mole of $O_{2 (g)}$ at 298 K and 1 atm to $O_{2 (l)}$ at 90.19 K, if the process is reversible. Coment, <u>without performing any calculations</u>, the results that would have been obtained if the transformation had been irreversible, placing the sample in H_{2 (l)} at 13.46 K.

Consider that vaporization occurs at 90.19 K, and the variation of enthalpy is 1630 cal·mol⁻¹ **Data:** $\overline{C_p}$ (O_{2 (g)}) = 7/2 R; $\rho(O_{2(l)}) = 1.141$ g·cm⁻³

$$R = 0.082 \text{ l} \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 1.987 \text{ cal} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.314 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$